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The affine extensions (there are 55 different ones) of the icosahedral group

developed by T. Keef and R. Twarock of the York Centre for Complex

Systems Analysis of the University of York [see in particular Keef et al. (2013).

Acta Cryst. A69, 140–150], and applied to the investigation of the architecture

of a number of icosahedral viruses, are here considered in the framework

of molecular crystallography. The basic ideas of such molecular description

involve positions with rational indices which approximate backbone positions

in viral polypeptide and RNA chains. The test case of the Pariacoto virus

suggests that the best-fit algorithm used in the York group’s approach should

be adapted to a more specific toolkit suited for the investigation of the

architecture of icosahedral viruses. Typical problems which could be solved by

means of such a toolkit are exemplified and put in the perspective of viral

properties.

1. Introduction

An affine extension of the icosahedral group has been

formulated by T. Keef and R. Twarock in terms of point arrays

with icosahedral symmetry and six-dimensional rational

indices (Keef & Twarock, 2008, 2009a). These discrete finite

sets, suitably fitted to the backbone structure of icosahedral

viruses, have been shown to approximate in a meaningful way

the architecture of both the viral capsid and the genome

enclosed in it (Keef & Twarock, 2009b; Keef et al., 2013).

Combined with the theory of structural phase transitions in

crystals, the Keef–Twarock approach allowed analysis of viral

maturation (Indelicato et al., 2012).

The assignment of a set of n rational indices to a position in

three dimensions leads to a corresponding nD description

(where the indices are the coordinates of lattice points in n

dimensions) and, therefore, to a crystallographic approach.

Such an approach, which is the natural one for incommensu-

rate crystals and for quasicrystals, has been shown to lead to

non-trivial structural relations in axial-symmetric biomacro-

molecules, like proteins and nucleic acids (see e.g. Janner,

2008a, and references therein), and is denoted as molecular

crystallography.

The application of molecular crystallography to icosahedral

viruses (they are biomacromolecules with axial symmetry)

allows a natural classification going beyond the standard one

of Caspar and Klug (Janner, 2006; Caspar & Klug, 1962).

Moreover, the geometrical results obtained for the archi-

tecture of the capsid could be extended to the genome as well

(Janner, 2011b; Keef et al., 2013) in a way consistent with the

phenomenological results obtained for proteins and nucleic

acids. Typical for such an approach are enclosing forms with

vertices having rational indices and crystallographic scalings

relating these forms.

Molecular crystallography deals with the morphological

properties of single molecules. By considering lattice-periodic

packing of these molecules in crystals, one obtains relations

going beyond both the classical crystallography [involving e.g.

integral lattices (Janner, 2004)] and the molecular one [e.g.

through encoding of the space-group symmetry in a viral

capsid (Janner, 2010, 2011a)].

The relation of these various approaches to the alternative

one based on an affine extension of the icosahedral group is

far from trivial and requires further work. The present paper,

where the Keef–Twarock approach is analysed in the spirit of

the molecular crystallography mentioned above, represents a

first step in this direction.

Considered as an example are icosahedral viruses already

analysed according to these alternative approaches and whose

structural data are reported in the Protein Data Bank (PDB):

the Pariacoto virus (PaV) (PDB key 1f8v; Tang et al., 2001),

the cowpea chlorotic mottle virus (CCMV) (PDB key 1cwp;

Speir et al., 1995), the satellite tobacco mosaic virus (STMV)

(PDB key 1a34; Larson et al., 1998), the RNA MS2 bacter-

iophage (MS2) (PDB key 1zdh; Valegård et al., 1997), the

tomato bushy stunt virus (TBSV) (PDB key 2tbv; Hopper et

al., 1984), the cucumber mosaic virus (CMV) (PDB key 1f15;

Smith et al., 2000), the Seneca Valley virus (SVV-001) (PDB

key 3cji; Venkataraman et al., 2008), the simian virus 40

(SV40) (PDB key 1sva; Stehle et al., 1996) and the murine

polyoma virus (murine py) (PDB key 1sid; Stehle & Harrison,

1996).

Discussed are: the Pariacoto virus (Keef & Twarock, 2008,

2009a,b; Keef et al., 2013; Janner, 2011b,c); the cowpea
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chlorotic mottle virus (Keef & Twarock, 2009b; Indelicato et

al., 2012; Janner, 2011b,c); the satellite tobacco mosaic virus

(Janner, 2011b,c); the MS2 bacteriophage (Keef et al., 2013;

Janner, 2011b,c); the tomato bushy stunt virus, the Seneca

Valley virus and the cucumber mosaic virus (Keef & Twarock,

2009b); the simian virus 40 (Keef et al., 2013); and the polyoma

virus (Keef et al., 2008).

2. A crystallographic approach for icosahedral viruses

A crystallographic characterization of icosahedral viruses is

here outlined, because it is shared by all the various approa-

ches mentioned in x1.

The icosahedral group 235 = fR5;R3jR
5
5 ¼ R3

3 ¼ ðR5R3Þ
2

¼ 1g leaves invariant a lattice in six dimensions, but not a

three-dimensional one. Indeed the lowest integral faithful

representation of 235 is six dimensional.

The action of 235 mentioned is on the six non-aligned

vectors pointing to vertices of an icosahedron that are the

projections of the six-dimensional simple-cubic lattice basis

into one of the three-dimensional subspaces invariant under

the icosahedral group. This action defines a Z-module �ico of

rank 6 and dimension 3. A possible basis for �ico, with

components with respect to the orthonormal basis e ¼

fe1; e2; e3g, is given by

a1 ¼ a0ðe1 þ �e3Þ; a2 ¼ a0ð�e1 þ e2Þ; a3 ¼ a0ð�e2 þ e3Þ;
a4 ¼ a0ð�e1 þ �e3Þ; a5 ¼ a0ð��e2 þ e3Þ; a6 ¼ a0ð�e1 � e2Þ;

ð1Þ

where a0 is the icosahedral lattice parameter and

� ¼ ð1þ 51=2Þ=2, so that

�ico ¼
Pi¼6

i¼1

niai jni 2 Z

� �
: ð2Þ

As the six vectors ai are linearly independent on the rational

numbers Q, a six-dimensional indexed position I, with

components (x; y; z) with respect to the orthonormal basis

e ¼ fe1; e2; e3g, is uniquely defined by the rational indices

½q1; q2; . . . ; q6� where the qi 2 Q are the components of I with

respect to the Z-module basis a ¼ fa1; . . . ; a6g.

The basic idea of a molecular crystallographic approach to a

viral structure is to approximate backbone positions, or

vertices of an enclosing form, by corresponding positions with

rational indices.

Applying to an initial indexed position I0 the icosahedral

group 235, one gets the orbit OðI0Þ of 235-equivalent positions,

which all have rational indices, and a polyhedron with icosa-

hedral symmetry generated from I0 with vertices at those

positions.

In the general case, the order of an orbit is 60, which is the

order of the group 235. Disregarding the trivial case of an orbit

of order 1, obtained from the position [000000] at the origin,

the other possible orbits have order 12, 20 and 30, and

correspond to an icosahedron, a dodecahedron and an icosi-

dodecahedron, generated (for example) from the indexed

positions [100000], [111000] and [110000], respectively.

It is convenient to define the following standard icosahedral

polyhedra, according to the choice one finds in Indelicato et al.

(2012), with characteristics indicated in Table 1, where (V E F)

denotes the number of vertices (V), edges (E) and faces (F) of

the polyhedron, and Sym. is the site symmetry of the vertices.

Here and further on, the indices �1 are noted as 1.

3. Affine extended pentagonal group

Before considering the icosahedral group, it is convenient to

illustrate the concepts and procedure of the affine extension of

a symmetry group by the two-dimensional pentagonal case.

One starts from the pentagonal Z-module �penta of

dimension 2 and rank 4, with as basis the vectors pointing from

the centre to four vertices of a regular pentagon. One can

choose:

bk ¼ ðcos k’; sin k’Þ; k ¼ 1; 2; 3; 4; ’ ¼ 2�=5; ð3Þ

so that

�penta ¼
P4

i¼1

nibijni 2 Z

� �
: ð4Þ

As reported in Keef & Twarock (2008, 2009a), Keef et al.

(2013) and illustrated here in Fig. 1, an affine extension

involves the following steps:

(i) One considers a starting pentagon with vertices at

½1000�; ½0100�; ½0010�; ½0001�; ½1111�

(Fig. 1a).

(ii) These positions are translated by the pentagonal vector

Tpenta ¼ �ðb1 þ b2 þ b3 þ b4Þ yielding the five additional

indexed points:

½0111�; ½1011�; ½1101�; ½1110�; ½2222�

(Fig. 1b). Note that this pentagonal vector is only one of a

finite number of possible translations in this classification.

(iii) One applies to all these ten points the fivefold rotation

R5,

R5 ¼
cos ’ � sin ’
sin ’ cos ’

� �
¼

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

0
BB@

1
CCA; ’ ¼ 2�=5;

ð5Þ
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Table 1
Standard polyhedra with icosahedral symmetry and a0 ¼ 1.

Standard
polyhedron (V E F) Generator Sym. Radius

Icosahedron
(ICO)

(12 30 20) [010000] =
ð�; 1; 0Þ

5 rICO ¼ ð2þ �Þ
1=2

Dodecahedron
(DOD)

(20 30 12) 1
2 ½111111� ¼
ð1; 1; 1Þ

3 rDOD ¼ 31=2

Icosidodecahedron
(IDD)

(30 60 30) 1
2 ½110000� ¼

1
2 ð�; �

2; 1Þ
2 rIDD ¼ 2



and one gets a first-order affine system P1 of cardinality 20,

decomposed into four orbits A;B;C;D of order 5, as indi-

cated in Table 2 and Fig. 1(c).

(iv) The higher-order affine systems (not considered in this

article) are obtained by repeating steps (ii) and (iii).

Note that the orbits A, D and C are related by the crys-

tallographic scaling S� with scaling factor �, which is invertible

and integral, like its inverse S1=�, possibly combined with the

two-dimensional total inversion.

S� ¼

0 1 0 1

0 1 1 1

1 1 1 0

1 0 1 0

0
BB@

1
CCA; S1=� ¼

1 1 0 1

0 0 1 1

1 1 0 0

1 0 1 1

0
BB@

1
CCA: ð6Þ

4. Affine extended icosahedral group

In a similar way as in the pentagonal case, one derives the

systems of the affine extension of the icosahedral group and

the decomposition of these affine systems into icosahedral

affine orbits. The starting polyhedra are the standard ones

indicated in Table 1. The admitted translations are discussed in

detail in Keef & Twarock (2008, 2009a) and in Indelicato et al.

(2012), so repetition is avoided here.

The 55 affine systems (up to first order) An, n ¼ 1; . . . ; 55,

derived by these authors have been numbered in the same

successive order as in their publications. In particular, A1 to

A41 appear in Table 5 of Keef & Twarock (2009a), the addi-

tional 13 ones A42 to A54 in Table 1 of Keef & Twarock (2008)

and the last one is indicated as shell26 in Table 2 of Indelicato

et al. (2012).

These systems have been computed again. The only

deviation found is in the cardinality of A42, which is 420 and

not 360, as indicated in Table 1 of Keef & Twarock (2008).

These orbits have been numbered for each affine system in

decreasing order of the radius of the corresponding standard

polyhedron.

Denoting by Anm the mth orbit, the one in the affine system

An with maximal radius is indicated as An1.
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Table 2
Orbits of the pentagonal affine system P1 (ordered according to
decreasing radius).

Orbit Name Generator Order Radius

B P11 [2000] 5 2
D P12 [1100] 5 �
A P13 [1000] 5 1
C P14 ½1011� 5 1=�

Figure 1
Affine extension of the pentagonal group (up to first order). (a) Start
configuration. (b) Pentagonal translation. (c) Fivefold rotation.

Figure 2
Points of the six orbits of the icosahedral affine system A26 and
corresponding standard radii.



As illustration the orbits of the affine systems A1, A26

(which plays a role in the structure of the Pariacoto virus, as

discussed further on) and A55 are listed in Table 3. In parti-

cular, the orbit points of A26 are plotted in Fig. 2 in a view

along the icosahedral twofold axis.

In the 55 affine systems one finds 470 orbits of the point

group 235: 36 are of order 12 (icosahedral orbits), 45 of order

20 (dodecahedral orbits), 70 of order 30 (icosidodecahedral

orbits), 316 of order 60 (general orbits) and 3 of order 1 (trivial

orbits).

All icosahedral orbits are mutually related by crystal-

lographic scaling transformations (invertible, with rational

entries), and this is also the case for the dodecahedral and the

icosidodecahedral orbits. In Table 4 the orbits of order 12 are

indicated together with their standard radius, scaling factor

and set of the rational indices of a chosen generator. In a

similar way, some few illustrative examples are reported for

the dodecahedral, the icosidodecahedral and the general case.

Scaling transformations mutually relate only some of the 60-

order orbits; therefore the corresponding scaling factors have

been omitted.

5. Fitting an affine system to the viral capsid

The central idea of the structural relevance of the affine

extended symmetry group is that the fitting of one, or more,

affine systems to a given virus yields a one-parameter char-

acterization of its architecture.

To begin with, one affine orbit is identified as an outer orbit,

among those having the largest standard radius in each affine

system (conventionally indicated by An1), which optimizes the

fitting of the residue of a given chain at the greatest radial

distance from the centre (the outer residue). Such a residue

Cout
� ð jÞ is the jth one of what can be

denoted as the kth outer chain Cout½k�,

as representative of the icosahedral

equivalent ones:

Cout
� ð jÞ 2 Cout½k�; r½Cout

� ð jÞ� ¼ rmax:

ð7Þ

The orbits An1 of all possible affine

systems An are then rescaled with

respect to Cout
� ð jÞ in such a way that

their radius is equal to rmax. Accord-

ingly, the C�-rescaled generator IC�
is

related to the the standard one I of

An1, with radius rst, by

IC�
¼

rmax

rst

I ¼ kI; ð8Þ

with k the rescaling factor.

Among all outer affine orbits, the

fitted An1 is the one generated by the

Iout
C�
ðnÞ at the minimal distance Dmin

from the outer residue Cout
� . Thus

Distance ½Cout
� ð jÞ; Iout

C�
ðnÞ� ¼ Dmin;

Iout
C�
ðnÞ 2 An1: ð9Þ
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Table 3
Orbits of the affine systems A1, A26 and A55.

System
Start
polyhedron Translation Cardinality Orbit Order

Radius (standard,
as in Table 1) Generator

A1 ICO �ð1=�ÞT5 116 A11 12 3.0776 1
2 ½111111�

T5 ¼ ð�; 1; 0Þ A12 60 2.6458 1
2 ½131111�

(ICO, �1=�) A13 12 1.9021 [100000]

A14 20 1.7321 1
2 ½111111�

A15 12 0.7265 1
2 ½311111�

. . . . . . . . . . . . . . . . . . . . . . . .

A26 IDD �1=ð2�ÞT5 290 A261 60 2.1404 1
4 ½131111�

[ICO, �1=ð2�Þ] A262 60 2.0000 1
4 ½111133�

A263 60 1.7214 1
4 ½111311�

A264 30 1.6180 1
2 ½101000�

A265 20 1.4013 1
4 ½1111111�

A266 60 1.1600 1
4 ½311111�

. . . . . . . . . . . . . . . . . . . . . . . .

A55 DOD �2T3 360 A551 20 6.2665 1
2 ½313311�

T3 ¼ ð0; 1=�; �Þ A552 60 5.9388 1
2 ½311311�

(DOD, �2) A553 60 5.3662 1
2 ½113311�

A554 60 5.3662 1
2 ½313111�

A555 60 4.2808 1
2 ½113111�

A556 60 3.4430 1
2 ½311111�

A557 20 2.8024 1
2 ½111111�

A558 20 1.7321 1
2 ½111111�

Table 4
Scaling properties of 235-orbits.

Orbits

Radius
(standard, as
in Table 3) Scaling Generator

36 orbits of order 12 (icosahedral)

A339 0.5878 1=2� 1
4 ½111111�

A15;A227;A248 0.7265 1=�2 1
2 ½311111�

A276;A358 0.9511 1=2 1
2 ½100000�

A35;A55;A165;A186 1.1756 1=� 1
2 ½111111�

A285;A326 1.5388 �=2 1
4 ½111111�

A13, A24, A34, A44, A54, A64, A75,
A85, A94, A105, A114, A125, A136,
A153, A205, A387

1.9021 1 [100000]

A334 2.4898 �2=2 1
4 ½311111�

A11;A63;A244;A255;A407 3.0766 � 1
2 ½111111�

A21 3.8042 2 [200000]

A31 4.9795 �2 1
2 ½311111�

45 orbits of order 20 (dodecahedral)

A187 0.6616 1=�2 1
4 ½111333�

. . . . . . . . . . . .

A551 6.2665 � þ 2 1
2 ½333111�

70 orbits of order 30 (icosidodecahedral)

A5116 0.3090 1=4� 1
4 ½111001�

. . . . . . . . . . . .

A541 6.8540 �4=2 1
2 ½332002�

316 orbits of order 60 (general)

A4410 0.8740 - 1
2 ½011211�

. . . . . . . . . . . .

A131 6.9266 - ½110102�



Note that the residue Cout
� ð jÞ is not necessarily the nearest one

to the indexed position Iout
C�
ðnÞ, so that another minimal

distance dmin occurs, that between the indexed (rescaled)

position and a residue C�ð j
0Þ,

Distance ½Iout
C�
ðnÞ;C�ð j

0Þ� ¼ dmin: ð10Þ

Applying these ideas to each of the polypeptide chains A;B;C

of the Pariacoto virus, one finds the positions shown in Figs. 3,

4 and 5. The corresponding fitting parameters are reported in

Table 5.

The icosahedral basis, as one finds in equation (1), relates

the (rational) indices with the corresponding orthogonal

coordinates of an indexed position. This basis (denoted as

ico1) is the one adopted in Figs. 3, 4 and 5 of the outer fitting of

the chains A;B;C of the Pariacoto virus, with the value of

a0 depending on the appropriate C� rescaling. This basis,

however, is not compatible with the orientation adopted in the

plot of the tomato bushy stunt virus according to its PDB file.

This incompatibility is demonstrated in Fig. 6, where the outer

fitting of the chain A is plotted in a similar way as for the

Pariacoto virus and using the same icosahedral basis ico1. One

sees indeed that the minimal distances between orbit points of

the outer residues Tyr244 and the corresponding rescaled

indexed ones (in green) are not orbit invariant as they should

be. The alternative basis ico3 adopted for the same fitting

in Fig. 7 appears to be a compatible one. The basis elements

compatible with the orientation used for various viruses are

indicated in Table 6.

The icosahedral bases compatible with the cowpea chlorotic

mottle virus and the Seneca Valley virus have not yet been

identified.

In the York group’s approach, the identification of the

affine system(s) characterizing the architecture of a given virus

does not follow the way presented here for the fitting between
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Figure 4
Outer fitting of the chain A (in red) with outer C� residue Ala204, outer
affine orbit A131, generator ½111131� at Dmin ¼ 7:1 Å and nearest residue
Ile201 at dmin ¼ 4:7 Å.

Figure 3
Outer fitting of the chain C with outer C� residue Ala204, outer affine
orbit A261, generator [000021] at Dmin ¼ 3:4 Å and (accidentally)
same nearest residue Ala204 at dmin ¼ 3:4 Å.

Figure 5
Outer fitting of the chain B (in blue) with outer C� residue Pro203, outer
affine orbit A121, generator ½012011� at Dmin ¼ 9:1 Å and nearest residue
Ile201 at dmin ¼ 5:2 Å.



a given chain and an associated affine orbit. It makes use

instead of a best-fit algorithm, as described in Keef et al.

(2013), which involves several steps. In particular, a sample

preparation (a), based on the viral structure one finds in the

PDB, is followed by an alignment and scaling (b), a sifting (c)

and finally by an evaluation of goodness of fit (d).

Here we do not try to reconstruct and discuss all these steps,

but the whole is analysed from another point of view and

restricted to the single representative test case of the Paria-

coto virus, making use of the data presented in Fig. 4 of the

same paper (Keef et al., 2013).

From the orbit points indicated, whose radii range from 174

to 43 Å, one recognizes two affine systems: the first one

denoted here as A26 of cardinality 290 and with six orbits

(listed in Table 3) and a second one, the system A15 of

cardinality 172 and with five orbits.

The A26 system is rescaled with respect to the outer residue

Ala204 of the chain C, which in this virus has the maximal

radial distance rmax ¼ 174 Å from the centre. The rescaled

orbits have then the radii given by: 174 (261), 162 (A262), 140

(A263), 131 (A264), 114 (A265) and 94 (A266). The fitting of

this affine system to the Pariacoto virus is shown in Fig. 8.

The affine system A15 belongs to the associated skeletal

configuration discussed in Indelicato et al. (2012), given here

as

Askeletal ¼ A26 [
1

2
A15 ð11Þ

and rescaled accordingly, with the rescaling factors k26 =

81.3 Å and k15 ¼ 1=2k26, so that the whole only depends on

one fitting parameter, the rmax. The five rescaled orbits of A15

then have the radii: 112 ðA151Þ, 92 ðA152Þ, 77 ðA153Þ, 70 ðA154Þ

and 43 ðA155Þ. The corresponding fitted orbit points are shown
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Table 5
Fitting parameters of the (rescaled) outer orbits with the chains A, B and
C of the Pariacoto virus.

Icosahedral basis ico1 ¼ fð1; 0; �Þg], distances in Å.

Chain
Outer
residue rmax Orbit Generator Dmin

Nearest
residue dmin

A C�ð197Þ
= Ala204

171 A131 ½111131� 7.1 C�ð194Þ
= Ile201

4.7

B C�ð154Þ
= Pro203

172 A121 ½012011� 9.1 C�ð152Þ
= Ile201

5.2

C C�ð153Þ
= Ala204

174 A261 ½000021� 3.4 C�ð153Þ
= Ala204

3.4

Figure 6
Incompatibility of the icosahedral basis ico1: a1 ¼ ð1; 0; �Þ; . . . used for
the fitting of the outer C� residue Tyr244 belonging to the chain A of the
tomato bushy stunt virus with the affine system A7, the outer affine orbit
A71, the generator ½021010� and nearest residue Val243. Compare the
affine orbit points (in green) with those in Fig. 7.

Table 6
Compatibility between virus orientation and corresponding icosahedral
bases.

Viruses Compatible icosahedral basis

PaV, MS2 ico1: a1 ¼ ð1; 0; �Þ, a2 ¼ ð�; 1; 0Þ, a3 ¼ ð0; �; 1Þ; . . .,
a6 ¼ ð�;�1; 0Þ

STMV ico2: a1 ¼ ð1; �; 0Þ, a2 ¼ ð�1; �; 0Þ, a3 ¼ ð0; 1; �Þ; . . .,
a6 ¼ ð0; 1;��Þ

TBSV, murine py,
SV40, CMV

ico3: a1 ¼ ð0; 1; �Þ, a2 ¼ ð�1; �; 0Þ, a3 ¼ ð��; 0; 1Þ; . . .,
a6 ¼ ð1; �; 0Þ

Figure 7
Compatibility of the alternative icosahedral basis ico3: a1 ¼ ð0; 1; �Þ; . . .
used for the fitting of the outer C� residue Tyr244 belonging to the chain
A of the tomato bushy stunt virus with the affine system A5, the outer
affine orbit A51, the generator 1

2 ½111113� and nearest residue Val243.
Compare the affine orbit points (in green) with those in Fig. 6.



in Fig. 9. The radial values indicated are exactly those one

finds in Keef et al. (2013).

The goodness of fit of these indexed positions is here

evaluated in terms of the residues of all the polypeptide chains

A;B;C;D;E;F and the P-backbone positions of the RNA

chain R of the Pariacoto virus having minimal distances dmin

within a 10 Å range (dmin < 10 Å) from one of the indexed

positions of the skeletal configuration.

The result is shown graphically in Figs. 10, 11 and 12. All

minimal distances of the various chains with respect to the

rescaled orbits of A26 and A15 are indicated in Table 7. Given

in italics are the distances larger than the 10 Å limit.

As can be seen, the chain D and the orbits of order 12 (153),

20 (A265, A154, A155) and 60 (262) are outside the 10 Å range

and can be considered as not containing valuable structural

information for the architecture of the Pariacoto virus. The

10 Å limit is not fully assumed ad hoc. It reflects the expected

spreading between viral positions and related indexed ones

and is indicative only. In any case, the values outside the 10 Å

range are also indicated and all the relations within this limit

are useful and not trivial. We recall that they depend on one

fitting parameter only. Moreover, please note that there are

points located more towards the interior of the capsid, which is

occupied by genomic RNA but for which no data are available

in the PDB file.

Similar situations are expected to occur in all the other virus

cases considered so far.

6. Towards a toolkit for icosahedral viruses

The discussion of the relations between the skeletal config-

uration and the structural properties of the Pariacoto virus

presented in the previous section is an indication that the goal

of characterizing the viral architecture in terms of affine

systems derived from an extension of the icosahedral group is

not fully realised.

This situation supports the idea of specializing the best-fit

algorithm mentioned above to a more specific toolkit for the

architecture of icosahedral viruses.

The presence in our fitting approach of two conceptually

different minimal distances (Dmin and dmin) suggests consid-

eration of two complementary problems: the fitting of an

indexed position nearest to a given residue (at distance Dmin)

and the finding of the residue (of more generally of a back-
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Figure 8
Pariacoto virus: affine system A26 rescaled by rmax ¼ 174, the radial
distance of the outer residue Ala204 of chain C [compare with Fig. 2 of
this article and Fig. 4 of Keef et al. (2013)].

Figure 9
Pariacoto virus: affine system A15 of the skeletal configuration
A26 [ 1

2A15, rescaled by the factor k15 ¼ 40:65 Å = 1
2k26, where k26 (Å)

is the rescaling factor of A26, as in the previous figure.

Table 7
Minimal distances (in Å) of the Pariacoto chains with respect to the
rescaled orbits of A26 and A15.

Orbit Order A B C D E F R

261 60 6.8 6.4 5.9 59.3 63.6 63.9 68.1
262 60 33.9 15.5 17.2 66.2 48.2 46.9 49.3
263 60 2.6 5.6 12.7 27.2 27.1 29.7 37.5
264 30 14.6 14.9 4.0 35.1 34.3 30.4 24.5
265 20 10.9 20.0 17.1 50.2 19.7 18.9 11.4
266 60 8.6 12.3 14.7 18.5 12.0 12.7 15.5
151 60 16.6 9.7 9.1 23.6 5.6 4.9 11.6
152 60 13.4 27.0 23.1 39.2 21.7 22.4 8.0
153 12 36.6 36.4 43.0 35.5 32.5 37.1 27.4
154 20 37.3 48.8 44.5 58.0 42.9 43.8 24.8
155 20 60.1 66.8 64.5 74.4 65.1 66.4 50.5
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Figure 10
Pariacoto virus: residues of the chains A (top view), B (middle view) and
C (bottom view) within a 10 Å range from the various orbits of the affine
system A26 (compare with Fig. 8).

Figure 11
Pariacoto virus: residues of the chains B (top view), C (middle view) and
E (bottom view) within a 10 Å range from the various orbits of the affine
system A15 (compare with Fig. 10).



bone position) nearest to a given indexed position (at distance

dmin).

Only positions with small integral indices are structurally

relevant, as one knows from the point-group symmetry of

crystal growth forms, and this requirement can be generalized

to rational indices as well. The affine extension of the icosa-

hedral group, to low order of the translations considered (here

to the first order only), can be seen as a way to generate finite

sets of structure-adapted low-indices positions which possibly

are at different radial distances and are, therefore, related by

transformations not limited to the icosahedral symmetry ones.

6.1. From a given residue to an indexed position

As an example of how to find an indexed position fitted to a

starting residue one looks for the generator of a rescaled orbit
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Figure 12
Pariacoto virus: residues of the chains F (top view) and backbones P of
the RNA chain R (bottom view) within a 10 Å range from the various
orbits of the affine system A15 (compare with Figs. 10 and 11).

Figure 13
Pariacoto virus. Chain A (top view): from residue Ala204 to indexed
position 1

2 ½111221� of A473 with nearest Pro205. Chain B (middle view):
from residue Pro203 to indexed position 1

2 ½121211� of A443 with nearest
Ala204. Chain C (bottom view): from residue Ala204 to indexed position
1
2 ½315131� of A435 with nearest Ala204.



of order 60 at the nearest distance Dmin from the given residue.

In the present case we choose an outer residue (at maximal

radial distance rmax) of a given polypeptide chain.

The choice of a general affine orbit is based on the idea that,

generically, an outer residue also gives rise by the action of the

icosahedral group to an orbit of order 60. This problem has

already been solved for outer chains in x4, the difference being

that there the restriction was imposed to the affine orbits with

maximal standard radius instead of orbits of order 60.

The result for the chains A, B and C of the Pariacoto virus is

presented in Fig. 13 and in Table 8, to be compared with Figs.

3, 4 and 5, and Table 5, respectively. So, for example, the

starting residue C0
� of the chain A is Ala204 having the

maximal radius rmaxðC
0
�Þ ¼ 170:95 Å. The fitted (rescaled)

orbit of order 60 is A473. The nearest indexed position of this

affine orbit is I0ðC�Þ ¼ 1=2½111221�. The minimal distance

between C0
� and I0 is Dmin ¼ 2:66 Å, whereas the residue

nearest to I0 is C� ¼ Pro205 at a distance dmin ¼ 2:03 Å.

6.2. From indexed position to nearest residue(s)

The problem is to determine the nearest residue to a given

indexed position. Actually, this problem has already been

solved in x4 for outer affine orbits and in x6.1 for orbits of

order 60.

Considered here are positions belonging to affine orbits of

order 12, order 20 and order 30, which have positions with site

symmetry 5, 3 and 2, respectively. Determined are the residues

at minimal distance dmin from the given indexed positions and

this for the polypeptide chains A, B and C of the Pariacoto

virus.

The results are shown in Figs. 14, 15 and

16, and the corresponding fitting parameters

are given in Table 9. Note that the results for

each type of orbit (icosahedral, dodecahedral

or icosidodecahedral) are independent of the

chosen representative because of mutual

scaling equivalence (as pointed out in Table

4) so that, after rescaling, the images are

correspondingly the same. The rescaling

factor and thus the images of the indexed

position, however, do depend on the chain of

the fitted residue.

7. Conclusions and perspectives

The physics of viruses (which in this paper are assumed to

have icosahedral symmetry) can be approached directly or

through a preliminary geometrical characterization of their

structure.

One can distinguish between three different geometrical

approaches based either on tiling models, or on affine exten-

sions of the icosahedral group (developed by the York group),

or on molecular crystallography (a concept introduced by the

present author).

The seminal classification scheme of Caspar & Klug (1962)

is of the tiling type and leads to the so-called T-numbers. A

tiling description is also possible for viruses not fitting into the

Caspar–Klug scheme (Twarock, 2004). The relations between

T-numbers, affine extensions and the alternative molecular

crystallographic classification of indexed polyhedra have been

discussed elsewhere (Keef & Twarock, 2009b; Janner, 2006).

The need to go beyond the icosahedral symmetry, typical

for the last two approaches, follows from the existence of

structural relations between viral backbone positions at

different radial distance from the centre, which are, therefore,

non-equivalent with respect to the icosahedral symmetry

group. This allows one, in particular, to extend the structural

characterization of the capsid to the genomic positions (not

considered by Caspar & Klug).

Common to the York group’s approach and my own

approach is the fact that the additional structural relations are

obtained from geometrical transformations of infinite order,

like translations and scaling. The number of atomic positions

involved in these relations is finite, like the different atomic

positions in a virus. This requires, therefore, a truncation. The

price is that the truncated set of transformations admitted

does not form a group and one can only speak of structural

relations and no longer of symmetry. An attempt to recover a

finite group for the truncated set has been formulated, for

special cases only, in terms of higher-dimensional crystal-

lographic point groups projected in three dimensions in a

similar way as for the icosahedral group (Janner, 2008d).

The present article tries to arrive at an understanding of the

approach mainly developed at the York Centre for Complex

Analysis of the University of York by T. Keef and R. Twarock

of an affine extended icosahedral group, with the aim of

characterizing the architecture of icosahedral viruses. It
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Table 8
Fitting parameters of the (rescaled) affine orbits of order 60 with the outer residues C0

� of the
chains A, B and C of the Pariacoto virus.

Compare with Table 5. Distances are in Å.

Chain Given residue Radius Indexed position Orbit Dmin Nearest residue dmin

A C0
� ¼ Ala204 170.95 I0 ¼ 1

2 ½111221� 473 2.66 C� ¼ Pro205 2.03
B C0

� ¼ Pro203 171.67 I0 ¼ 1
2 ½121211� 443 2.59 C� ¼ Ala204 1.76

C C0
� ¼ Ala204 173.60 I0 ¼ 1

2 ½315131� 435 3.49 C� ¼ Ala204 3.49

Table 9
Fitting parameters of the residues belonging to the chains A, B and C of
the Pariacoto virus, nearest to a (rescaled) indexed affine position, with
site symmetry 5, 3 and 2, respectively.

Distances are given in Å.

Generator I0 Orbit
Site
symmetry Chain C� Radius dmin

½000010� A13 5 A Met175 157.4 4.7
B Asn49 104.3 28.2
C Leu340 111.0 38.6

½100011� A122 3 A Ala21 124.8 3.9
B Met175 137.0 5.3
C Asn173 136.5 5.1

½010010� A22 2 A Gly33 118.0 8.0
B Arg220 139.4 13.8
C Thr140 103.4 3.0
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Figure 15
Pariacoto virus, dodecahedral orbit A122 (black points), generator
[100011]. Nearest residue: Ala21 of chain A (top view), Met175 of chain
B (middle view) and Asn173 of chain C (bottom view) (see Table 9).

Figure 14
Pariacoto virus, icosahedral orbit A13 (black points), generator [000010].
Nearest residue: Met175 of chain A (top view), Asn49 of chain B (middle
view) and Leu340 of chain C (bottom view) (see Table 9).



represents a first step only, as the connections with alternative

approaches like the one developed by the author in a number

of publications have not yet been worked out in detail. Only

some basic fundamental ideas dealing with what is denoted as

molecular crystallography have been taken into account here.

To complete the present discussion, the affine systems and

the affine orbits involved should be specified, as has been done

here for the Pariacoto virus, also in all other viruses whose

architecture has already been characterized according to the

Keef–Twarock–Wardman approach.

Moreover, the problem of the compatible icosahedral basis

for viruses like the Seneca Valley virus and the cowpea

chlorotic mottle virus, mentioned in x5, should be considered

in general and not only ad hoc; at least so far it has not yet

been solved by means of the best-fit algorithm (Keef et al.,

2013).

Despite the preliminary character of the present work,

some general conclusions can be drawn leading to perspec-

tives open for further investigations.

(i) The systems of an affine extended icosahedral group

allow a one-parameter characterization of structural proper-

ties of both the viral capsid and the genome.

(ii) Not every viral chain, nor every orbit of the fitted affine

systems is involved in this characterization.

(iii) By the affine extension method, one generates a fairly

large number of positions with integral (and rational) low

indices, which appear to be relevant for the structural char-

acterization of viruses.

(iv) From the York group’s best-fit algorithm, a more specific

toolkit should be developed for the analysis of the architecture

of icosahedral viruses involving structural relations based, for

example, on: indexed backbone positions; regions with a given

site point symmetry; crystallographic scalings; polyhedral

enclosing forms having vertices at positions with rational

indices; and symmetry properties of lattice-periodic packed

structures.

In particular, similar relations can be expected between the

affine orbit points fitted sequentially to the C�’s of the primary

structure of the various chains and turning points of their

secondary structure (�-helices, �-strands and loops) as has

been shown to be the case for octahedral holoenzymes

(Janner, 2008b,c).

In this purely geometrical approach, one should keep

in mind that the final goal is a better understanding of

the physical, chemical and biological properties of viruses

involving typical phenomena like mutation, conservation,

maturation and expansion. This allows possible comparisons

between viruses of the same family but with different serotype,

and viruses of different families.

As already known, the approach can be generalized to other

biological systems, like proteins with a given axial point-group

symmetry.

A better insight into the research activity of the York group

has been obtained as a result of a visit to the York Centre for

Complex Systems Analysis, the University of York, at the
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Figure 16
Pariacoto virus, icosidodecahedral orbit A22 (black points), generator
½010010�. Nearest residue: Gly33 of chain A (top view), Arg220 of chain B
(middle view) and Thr140 of chain C (bottom view) (see Table 9).



beginning of May 2012. The valuable comments made by these

colleagues during the visit are gratefully acknowledged.

Thanks are expressed to one of the referees whose suggestions

helped to improve the manuscript.
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